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Introduction

All MLB teams have a private data analytics team devoted to running analyses and making predictions for
that team; however, these analyses and results are not made public in an attempt to give the respective
team an advantage. The goal of this project is to contribute to this public repository of MLB projects by
predicting the distance a batted ball will travel when hit from a professional Major League Baseball (MLB)
player and to find an effective algorithm to make these predictions.
One of the great aspects of baseball is the amount of random variables at play and the variation of day-to-day
gameplay. One variable of interest is how far a batter will hit a ball. With a model that can predict how
far a ball will travel, teams may be better able to predict where to place their position players and how to
prepare these players for a ball. For instance, if a player is more likely to hit a ball in the outfield than
the infield, a team’s outfielders can be more prepared for a fly ball. At the same time, it may be useful for
batters to know trends of how far balls are typically hit in certain situations in order to try and hit a ball
somewhere else in the field.
To predict hit distance, I explore three algorithms: linear regression (implemented by hand with matrix
algebra), decision trees, and neural networks. Each algorithm is used to train several models and prediction
accuracies are compared.
In order to efficiently record and analyze hit distance, I divide up the field into distance categories (measured
in feet from home plate):

• Zone 1: 0 - 70
• Zone 2: 71 - 140
• Zone 3: 141 - 210
• Zone 4: 211 - 280
• Zone 5: 281 - 350
• Zone 6: 351+

The regression algorithm predicts a numeric value for hit distance which is then assigned a zone based
on the above categories while the decision tree and neural network predict the category itself. From my
analyses, it appears that neural networks perform the best when predicting hit distance categories (81.14%
accurate on test data with two predictors) followed by decision trees (73.22% accurate on test data with
two predictors). Unfortunately, the linear regression assumptions were not met (some information on the
analysis is provided nonetheless) indicating that linear regression is not the most useful model to use when
predicting hit distance.

Related Work

Various other projects have been attempted in baseball analytics, usually with the goal of predicting pitch
type or the outcome of a game. Huang and Li (2021) use various neural networks and Support Vector
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Machines (SVM) to predict wins and losses of MLB games. Cserepy et al. also attempted to predict game
outcomes but through simulations rather than an hard algorithm. Lee (2022) uses neural networks but for
predicting a pitch type and where the pitch will land in the strike zone. Everman (date unknown) uses a
handful of popular statistics to predict overall team performance.
Hung (2012) chose to use Principal Component Analysis to reduce data dimensions followed by a k-means
clustering algorithm in order to evaluate certain batter metrics and skill set. Young et al. take a unique
approach by using a neural network to predict which players might be inducted into the Hall of Fame. There
appears to be support for using neural networks in baseball analysis as well as classifiers. Regression seems
to be a fairly traditional approach to sports analysis and both Maszczyk et al. (javelin throws) and Karnuta
et al. (baseball injuries) demonstrate the superiority of neural networks in this field.

Methods

Initial Data Source and Details

Data for this project was collected using the R package baseballr which allows for connection to the MLB
Statcast (Baseball Savant) Database. The data analyzed in this project contained all pitches from the MLB
2022 regular season (i.e., no postseason) but was filtered down later on in the process (see EDA). Originally,
I choose as many variables as I could that I thought might have an influence over the distance of a batted
ball (hit_distance). These were:

• game_date: the specific date a game was played (YYYY-MM-DD)
• events: the result of a play (e.g., hit, foul, out)
• pitch_type: the type of pitch thrown by the pitcher (abbreviation)
• release_speed: the speed of the ball out of the pitcher’s hand
• stand: the handedness of a batter
• p_throws: the handedness of a pitcher
• balls: the number of balls in the count at the time of the pitch
• strikes: the number of strikes in the count at the time of the pitch
• outs_when_up: the number of outs in the inning at the time of the pitch
• inning: the inning number the pitch occurred in
• inning_topbot: determiner of whether the inning was the top or the bottom
• launch_speed: the speed of the ball off of the bat
• launch_angle: the angle of the ball after being hit
• release_spin_rate: the spin rate of the baseball out of the pitcher’s hand (RPM)
• at_bat_number: the number of the at bat in the game
• pitch_number: the number of the pitch in the at bat

In this original, “raw” data other variables were also selected to help the EDA process and to obtain more
information about an observation:

• description: a brief indication of the result of the play (e.g., hit, out, foul)
• events: a detailed indication of the result of the play (e.g., type of hit, foul, type of out, etc.)
• pitch_name: the full name of the corresponding pitch (as abbreviated in pitch_type)
• home_team: an unused variable indicating the home team at the time of the pitch (to be used in the

future work?)
• dist_categ: a variable added later on indicating the respective distance category for an observation

based on its hit_distance value.

The script used to gather this data iterates over each day in the 2022 regular season and collects the above
variables for each day. It then automatically removes any observations that may have missing value for
hit_distance (as these would not hold any use for this project).
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Exploratory Data Analysis

After collecting the raw data, I began analyzing variables individually and together through an exploratory
data analysis (EDA) phase (eda.Rmd). This EDA led me to make a few changes in the data I was planning
to use through transformation and preprocessing.

I realized that I need to exclude bunts, foul balls, and any hits with a hit distance less than 15 feet to meet
the regression assumption of normality. There is a strong floor effect here; as hit_distance cannot be 0,
a lot of small-valued distances (such as from bunts) appeared making the histogram of hit_distance not
approximately normal (Figure 1).
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Figure 1: Distribution of Hit Distance

I am analyzing hit distance in an attempt to help prepare fielders for potential hits. Foul balls are not being
considered as they were not in the field of play and may not accurately represent what in-play balls would
do.

I also looked at the distribution of dist_categ (Figure 2).

From this figure we can see that some categories (namely, Zones 2, 3, and 6) have less observations that the
others. It is unclear if this difference will play a role in how the algorithms will perform. Typically, we wish
to see a roughly equal number of observations per category but since there are over 10,000 observations in
each zone, this may not be as necessary.

From looking at game_date, I noticed that the number of observations per month differed (Figure 3).

Although it wouldn’t be feasible to include each unique value of game_date in a model, I decided to turn
each value of game_date into a month variable to include in further analyses (Figure 4).

In addition to these changes, I needed to consolidate of of the lesser-used pitch_types into an “other”
category while retaining the commonly used pitches. Those merged into “other” included CS, EP, FA, FS,
KC, and KN (Figure 5).

I also decided to limit my analysis to only pitches in the first 9 innings of each game, to remove at_bat_number
from the project, and to take the square root of pitch_number which was slightly right skewed.

For bivariate EDA, I generated a correlation matrix (Figure 6). For the most part, the variables are un-
correlated; however, launch_angle and launch_speed are both moderately correlated with hit_distance,
which does make sense here as these variable occur after a ball has been hit and together can create some
accurate predictions (Figure 7).
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Figure 6: Correlation Matrix
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Not many other variables are correlated with hit_distance and this may indicate that they are not useful
in predicting hit_distance. It is good to see that balls and strikes are correlated with pitch_number
and that inning is coordinated with at_bat_number. This helps verify that the data was collected correctly.

Preprocessing

After completing EDA, I moved on to a preprocessing step where I gathered all the information from the
EDA and performed some variable deletion, addition, and transforming to prepare the data for the upcoming
model training.

The file preprocessing.Rmd contains the steps taken in the form of multiple datasets on which transforma-
tions were applied. mlb_raw consists of filters based on the results of the EDA. mlb_transform then builds
on that by adding in new variables such as month, the square root of pitch_number, the new pitch_type
(with the “other” category), and a factor variable for the field divisions.

mlb_dummy then takes that data and adds in dummy variables and select interaction variables for the re-
gression and neural network models, removing any observations with missing values. Finally, the data is
randomly split into a train and test data where 85% of the original observations are in the training set and
the remaining 15% for the testing data. These datasets contain all possible variables that could be used by
any of the three model in this project (not all algorithms will use all of the variables in the dataset). To
avoid having to redesign and resplit the data for each model (this would mean that each model would be
getting a different training set), the file writes the train and test files to disk in order to ensure that each
algorithm receives the same training data.

Linear Regression

As part of the final project requirements, a portion of the project was to be completed “by hand”. For
this piece, I chose to derive a linear regression algorithm through the necessary matrix algebra steps rather
than use the lm function in R. Creating the algorithm in this way has helped me to appreciate the power of
packages and functions as well as the simplicity of code (the lm function requires less lines of code than a
full matrix algebra function).

The file regression.Rmd contains all of the code for the algorithm, models, and evaluation. The regression
algorithm is run on all numeric, dummy, and interaction variables (and therefore does not need pitch_number
or pitch_type). In total, there were six models evaluated:

1. The Full Model: contains all variables
2. Reduced 1: Contains all variables from the full model whose individual p-values are less than 0.05
3. Reduced 2: Contains all variables from Reduced 1 individual p-values are less than 0.05
4. Reduced 3: Contains select variables from the full model that I chose arbitrarily
5. Reduced 4: Contains all variables from Reduced 3 whose individual p-values are less than 0.05
6. Reduced 5: Contains variables from the full model specifically chosen based on the previous models.

These variables were consistent over the reduced models.

Unfortunately, not all of the linear regression assumptions were met for these models. Some of the variables,
as discovered in the EDA step, are not completely normally distributed. However, the most egregious
assumption violation is seen in the residual plot (shown below in Figure 8 for the Reduced 5 model). Note
that the following plot also is formed when the lm function is used.

This residual plot shows a lack of constant variance around 0 and also a lack of evidence towards normality
as the plot does not show a random scatter of points. Thus, the results from this regression algorithm are
not reliable and should not be used in further analysis. Testing accuracies are not included for this reason.
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Figure 8: Residual Plot for Reduced 5

Decision Tree

The decision tree algorithm (dtree.Rmd) was implemented through the rpart package. The data used for
this algorithm looked slightly different than that for regression. Since decision trees are designed to work very
well with categorical data, no dummy variables were needed and interactions were also removed. Instead,
each categorical/discrete variable was converted into a factor.
As model training proceeded, it was discovered that launch_angle and launch_speed were driving the
prediction. This does make sense as these two variables occur after a ball has been hit and can largely
determine how far a ball will travel. All in all, three models were attempted to determine the effects of these
two variables on prediction:

1. The Full Model: Contains all variables
2. Reduced 1: Contains all variables except for launch_speed and launch_angle
3. Reduced 2: Contains only launch_speed and launch_angle

Each model uses a max depth of 5 (as recommended by Uzair & Jamil) and a complexity parameter (cp)
set at 0.00001.

Neural Network

The neural network algorithm was implemented using the nnet package, as recommended by Mahdi et
al. The data used to train the neural network consisted of all variables used in the linear regression, minus
the interactions (thus the dummy variables were used). Before model training, all variables (except for
dist_categ) were scaled to have a mean of 0 and unit variance. Similarly to the decision tree algorithm, it
was discovered that launch_angle and launch_speed were controlling the predictions, which, again, does
make sense in the context of hit distance. As a result, the same three models were chosen:

1. The Full Model: Contains all variables
2. Reduced 1: Contains all variables except for launch_speed and launch_angle
3. Reduced 2: Contains only launch_speed and launch_angle

All models use a hidden layer size of 5 and a decay value of 1.0e-7.
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Results and Discussion

Training Set

Explorations of model performance on training data demonstrated interesting patterns. Below is a summary
of model accuracies of predicting hit distance on the training data.
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Training Accuracies by Algorithm

Overall, it appears that variables whose measurement occurs after a ball has been hit are the most accurate
at predicting how far the ball will travel. This makes logical sense as the trajectory of a baseball is largely
determined by the ball’s angle and velocity and with just those two pieces of information, we can predict
the ball’s ultimate distance with high accuracy. For instance, as in the figure above, we can see that for
both the decision tree and the neural network, the Reduced 1 model (which contains all variables except for
launch_speed and launch_angle) have by far the lowest accuracy of the three models, at 0.223 and 0.218,
respectively, and do not offer any productions for some categories demonstrating that the other variables do
not provide a lot of information on hit distance on their own.

At the same time, the Reduced 2 models (those with only launch_speed and launch_angle) provide very
accurate predictions, either with the same accuracy or higher than the full model. This also indicates that
adding in extra predictor variables is not beneficial to promoting model accuracy. It is possible that other
unused variables may provide this benefit (see Future Work).

The regression algorithm did was poor at predicting hit distance; even with invalid results the accuracies
barely scrape past 20% success. Based on this project, it appears that linear regression is not a successful
algorithm choice for predicting hit distance and that other algorithms offer more accurate and valid results.
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Test Set

What follows is a summary of test and training accuracies for the decision tree and the neural network.
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In general, the predictions for the testing data were almost exactly as accurate as those for the training
data which is a good sign. Regardless of the model, it appears that decision trees and neural networks are
reliable models for the prediction of hit distance (or, rather, distance zone), at least for the data used in this
project. The testing results also demonstrate the pattern of launch_speed and launch_angle controlling
the prediction.
As recommended by Mitchell et al., I have included a model card containing details on the models used
in this project. This model card does not follow Mitchell et al.’s guidelines exactly but hopefully provides
enough information to future researchers to use these algorithms and models. Emphasis is placed on the
Reduced 2 models of the decision tree and neural network; regression is not considered.

Conclusion

Overall, this project provides useful information for future projects interested in predicting hit distance.
Although linear regression may not be the ideal model solution for such a problem, decision trees and
particularly neural networks show promise and have the potential to serve highly accurate predictions. With
these two algorithms, the variables launch_speed and launch_angle appear to drive the prediction with
a high accuracy coming from models using just those two variables as predictors. However, the accuracy
for predictions made without these two variables may improve in future work with a different selection of
predictor variables.
Nevertheless, this project had some limitations and would benefit from future work in the use of new variables
and an expanded scope as described in the following section.
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Limitations and Future Work

The main limitations for this project occur due to the scope of the data. At its current state, the data only
consists of observations from the 2022 regular season (in the first 9 innings of each game). The results from
this project would benefit from replication using data from previous seasons, postseasons, extra innings, and
even using more or different explanatory variables (such as including foul balls, weather, home field advantage,
or a team’s winning streak). As mentioned in the results section , launch_speed and launch_angle drive
the predictions. Since the measurement of these two variables occurs after the ball is hit, it would be useful
to find a more accurate way to predict hit_distance with more advanced notice.

Additionally, the analysis would benefit from expanded detail in terms of predicting hit_distance. Cur-
rently, the data is aggregated: every pitch is treated the same regardless of home/away team, pitcher, batter,
or ballpark. However, the setting in which a player finds themselves may in fact determine how far a ball is
hit / can be hit. For example, a certain pitcher may be able to prevent balls from travelling very far or the
dimensions of a ballpark could determine or limit the distance a ball could travel (e.g., Yankee Stadium’s
right field vs. Fenway Park’s Green Monster). Future work may even examine the likelihood of hitting a
home run given the ballpark, weather, and pitcher (among other potential variables).

Data and Software Availability

The files used for this project (code, scripts, and data) can be found on my GitHub repository (username
ian-curtis and repository mlb-hit-dist, raw link https://github.com/ian-curtis/mlb-hit-dist). In partic-
ular, the raw data is found in the data folder under the name of mlb_raw.csv and scrape.R contains the
code used to grab the data. This folder also contains the train and test data as well as a summary file of
model performance. Files in the root directory are numbered according to the order in which they were
completed, not in order of importance or preference.
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